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Abstract. We study causal viscous hydrodynamics in the context of central relativistic heavy-ion collisions
and provide details of a straightforward numerical algorithm to solve the hydrodynamic equations. It is
shown that correlation functions of fluctuations provide stringent test cases for any such numerical algo-
rithm. Passing these tests, we study the effects of viscosity on the temperature profile in central heavy-ion
collisions. Also, we find that it is possible to counter-act the effects of viscosity to some extent by re-adjusting
the initial conditions. However, viscous corrections are strongest for high-mass particles, signaling the break-
down of hydrodynamic descriptions for large η/s.

1 Introduction

Successful fits of ideal hydrodynamics to experimental
data on several observables [1–5] at the highest energies
of the ongoing heavy-ion program [6–9] at the relativistic
heavy-ion collider (RHIC) seem to indicate a very small
value of the ratio of shear viscosity over entropy. Since cal-
culations of this ratio in QCD at weak coupling αs � 1
give [10, 11] a numerical value that turns out to be larger by
about one order of magnitude than the conjectured strong-
coupling value for relativistic quantum field theories at
finite temperature [12] (see also [13]), this has given rise
to the idea of a “strongly-coupled” quark–gluon plasma
phase [14–21].
However, up to now calculations in the regime of strong

coupling are limited to theories which possess a gravity
dual theory, such as N = 4 super Yang–Mills theory [22].
So far, no such dual theory has been discovered for QCD,
meaning that the main available tool to study dynamical
processes in QCD are based on weak-coupling approaches
(although lattice-based techniques for making quantitative
measurements of near-equilibrium quantities may be avail-
able soon [23, 24]).
Given that the numerical value of the QCD coupling

αs within the range of temperatures applicable for RHIC
is assumed to be close to the range αs = 0.2–0.4, one ob-
serves that while this value is not very small, it is not
very large either. Thus, although it would be of great in-
terest to have results for QCD at very strong coupling,
there is at least some hope that existing weak-coupling
techniques might actually offer a description of RHIC
physics that is not inferior to still-to-be-discovered QCD
strong-coupling techniques (or likewise, extrapolating ex-
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isting strong-coupling results from theories (very) different
from QCD).
Along these lines, it has recently been discovered that

non-Abelian plasma instabilities [25] create turbulent color
magnetic fields [26, 27] that may induce a very small effect-
ive (“anomalous”) shear viscosity coefficient [28, 29], with-
out invoking strong coupling effects. Within the initial con-
ditions obtained in the color-glass-condensate model [30]
it is, however, unclear whether this effect is relevant for
present RHIC energies [31, 32].
Regardless of these issues, it is important to note that

so far the ratio of shear viscosity over entropy density
for RHIC energies is fairly unconstrained. While the gen-
eral trend of viscous corrections to ideal hydrodynamics
has been studied by Teaney [33], a dynamical implemen-
tation of viscous hydrodynamics and comparison to ex-
perimental data is still lacking. This is partly due to the
fact that the “simplest” form of viscous hydrodynamics,
the relativistic Navier–Stokes equations, are be-riddled by
acausality problems and instabilities [34]. Therefore, there
has been recent interest in so-called second-order (Israel–
Stewart [35–37]) theories [38–48] which are, however,
of more complicated structure than the Navier–Stokes
equations.
Specifically, it seems that adapting existing numerical

hydrodynamic solvers to treat Israel–Stewart theory for all
but the simplest geometries is a non-trivial task. It might
therefore be worthwhile to devise completely new algo-
rithms that are more suitable (or at least simpler) than
present hydrodynamic solvers. Along these lines, in this
work we present a straightforward algorithm for solving
the Israel–Stewart viscous hydrodynamic equations for ge-
ometries that are longitudinally expanding, are space-time
rapidity independent and have radial symmetry, and thus
should be well suited to describe viscous hydrodynamics of
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central collisions at RHIC and in the future at the large
hadron collider (LHC).
Our work is organized as follows: In Sect. 2 we review

the equations of causal viscous hydrodynamics and present
evidence that our numerical algorithm reproduces the ideal
hydrodynamic behavior in the limit of a small ratio of vis-
cosity over entropy, as it should.
In Sect. 3, we present a more involved test, which is

based on measuring correlation functions of small fluctua-
tions and comparing to analytic results.
In Sect. 4, our results for the temperature evolution and

particle spectra in relativistic causal viscous hydrodynam-
ics are presented, and we give our conclusions in Sect. 5.

2 Setup and comparison
with ideal hydrodynamics

The basic equations of causal viscous hydrodynamics that
we choose to study are given by [45]

(ε+p)Duµ =∇µp−∆µν∇σΠ
νσ+ΠµνDuν ,

(1)

Dε=−(ε+p)∇µu
µ+
1

2
Πµν〈∇νuµ〉 ,

(2)

τΠ∆
µ
α∆

ν
βDΠ

αβ+Πµν = η〈∇µuν〉−2τΠΠ
α(µων)α , (3)

where ε, p are the energy density and pressure, respectively,
uµ is the flow four-velocity that obeys uµu

µ = 1, and Πµν

is the shear tensor that fulfills uµΠ
µν = 0 =Πµµ and char-

acterizes the viscous deviations in the energy momentum
tensor,

T µν = (ε+p)uµuν−pgµν+Πµν . (4)

Furthermore, η and τΠ are the shear viscosity coefficient
and relaxation time that are related by η

τΠ
= 2p3 in weakly-

coupled QCD [45] and the remaining definitions are

dµu
ν ≡ ∂µu

ν+Γ ναµu
α , D ≡ uµd

µ, ∇µ ≡∆µνdν ,

∆µν ≡ gµν −uµuν ,

ωµν =∆µα∆νβ
1

2
(dβuα−dαuβ) ,

〈AµBν〉 ≡AµBν +AνBµ−
2

3
∆µνAαB

α ,

(Aµ, Bν)≡
1

2
(AµBν +AνBµ) , (5)

where Γ ναµ are the Christoffel symbols. As outlined in

the introduction, we will be interested in systems which
are rapidity-invariant and have radial symmetry; there-
fore, we choose to work in co-moving and radial coordi-

nates τ, r, φ, η with the relations τ =
√
t2− z2, r2 = x2+y2,

tanφ = y/x and η = atanh(z/t). The only non-vanishing
fluid velocity components are then uτ and ur with the re-

lation uτ =
√
1+(ur)2, and neglecting gradients in φ and

η we find for the above equations

(ε+p)Duτ =
(
1− (uτ)2

)
(∂τp−dνΠ

ν
τ )−u

τur

× (∂rp−dνΠ
ν
r ) ,

(ε+p)Dur =−uτur (∂τp−dνΠ
ν
τ )−

(
1+(ur)2

)

× (∂rp−dνΠ
ν
r ) ,

Dε=−(ε+p)θ+
1

2

(
−Πrr (1− v

2)2〈∇rur〉

− r2Πφφ 〈∇
φuφ〉− τ2Πηη 〈∇

ηuη〉
)
,

−dνΠ
ν
τ = v

2∂τΠ
r
r + v∂rΠ

r
r +Π

r
r

×

(
∂τv

2+∂rv+
v2

τ
+
v

r

)
+
1

τ
Πηη ,

dνΠ
ν
r = v∂τΠ

r
r +∂rΠ

r
r +Π

r
r

(
∂τv+

v

τ
+
2− v2

r

)

+
1

r
Πηη ,

τΠDΠ
η
η +Π

η
η =−ητ

2〈∇ηuη〉 ,

τΠDΠ
r
r +Π

r
r =−η〈∇

rur〉+2urτΠ (Π
r
τDu

τ +ΠrrDu
r) ,

〈∇rur〉=−2∂ru
r−2urDur+

2

3

(
1+(ur)2

)
θ ,

r2〈∇φuφ〉=−2
ur

r
+
2

3
θ ,

τ2〈∇ηuη〉=−2
uτ

τ
+
2

3
θ ,

θ = ∂τu
τ +∂ru

r+
uτ

τ
+
ur

r
, (6)

where v = ur/uτ , Πrτ = −vΠ
r
r , Π

φ
φ = −Π

η
η − (1− v

2)Πrr
and hereD = uτ∂τ +u

r∂r. This system of equations has to
be closed by providing an equation of state, e.g. ε= ε(p).

Clearly, it is possible to use the relation uτ =
√
1+(ur)2

to eliminate either uτ or ur from the above equations.
Defining γ = uτ = (1− v2)−1/2 one obtains

[
γ4(ε+p)− (1− v2γ2)Πrr

]
∂τv

=−γ2(∂r+ v∂τ )p+(∂r+ v∂τ)Π
r
r

−
[
γ4v(ε+p)+γ2vΠrr

]
∂rv

+

(
v

τ
+
2

r

)
Πrr −γ

2

(
v

τ
−
1

r

)
Πηη

∂τ ε=−
[
(ε+p)γ2−Πrr

]
v∂τv− v∂rε

− (ε+p)

[
γ2∂rv+

1

τ
+
v

r

]

+Πrr

[
∂rv−

v

γ2r

]
−Πηη

[
v

r
−
1

τ

]
. (7)

However, in the code we prefer to keep both uτ and
ur, solving equations for them independently so that
a non-trivial consistency check on the numerics is pro-
vided by monitoring the deviation of (uτ )2− (ur)2 from
unity.
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Fig. 1. Comparison between numerical results and the analytic approximation (12) (full and dashed lines, respectively) for the
evolution of the temperature (left figure) and the velocity v = u

r

uτ (right figure). The slight disagreement between numerical and
analytical results is due to the approximations involved in the analytic solution and has the same sign and size as in the original
work [52]

2.1 Discretization

We use discretized space-time and compute differentials of
a function f(τ, r) as finite differences,

∂rf(τ, r) =
f(τ, r+a)−f(τ, r−a)

2a
,

∂τf(τ, r) =
f(τ + δτ, r)−f(τ, r)

δτ
, (8)

where a, δτ are the spatial and temporal lattice spacings,
respectively. The boundaries are taken care of by using
one-sided derivatives.
Provided a starting condition at time τ = τ0 for the

variables uτ , ur, ε,Πrr ,Π
η
η one can then integrate the set

of equations (6) forward in time. The virtue of this ap-
proach is that one immediately obtains the results for
the fluid velocities etc. rather than having to perform
the “usual” hydrodynamic algorithm (transforming to the
calculational frame, integrating equations, transforming
back). The drawback is that in (6), time derivatives of
the above variables are still coupled (e.g. the first equa-
tion of (6) contains both ∂τu

τ and ∂τp). However, since
all time derivatives enter only linearly this can be recti-
fied by making use of a linear equation solver so that e.g.
∂τu

τ = f(τ, r), which can be directly integrated using the
above discretization.
In practice, this works as follows: from the first equa-

tion in (6) we pick out the coefficients of the time deriva-
tives ∂τu

τ , ∂τu
r, ∂τp and label them as a00, a01, a02, re-

spectively. The remaining part of the equation, which con-
tains no time derivative, is called b0. Thus, it becomes of
the form

a00∂τu
τ +a01∂τu

r+a02∂τp= b0 . (9)

Note that in order to obtain this form we have expanded
the derivatives dνΠ

ν
τ , dνΠ

ν
r by using the relevant equa-

tions in (6). A similar procedure for the second and third

equation of (6) leaves us with

a10∂τu
τ +a11∂τu

r+a12∂τp= b1 ,

a20∂τu
τ +a21∂τu

r+a22∂τp= b2 . (10)

With δj = ∂τ (u
τ , ur, p), these three equations may be writ-

ten in matrix form as aijδj = bi, which has a solution
unless det aij = 0. Numerically, this matrix equation is
readily solved using a standard linear-equations solver, so
δj is known explicitly and may be used to finally com-
pute ∂τΠ

η
η and ∂τΠ

r
r . This completes the setup of our

algorithm1.

2.2 Testing the code – ideal hydrodynamics

As a first test, we run our numerical code for a very small
value of viscosity, η/s= 10−4, and compare our results to
ideal hydrodynamics. Our problem of choice is to start
with a configuration for the energy density

ε(r, τ0) =
ε0

1+exp [(r−R)/σ]
, (11)

whereR= 6.4 fm can be thought of as the “radius” of a nu-
cleus, and ε0 is such that the temperature (assuming an
ideal gluon gas) is T0 = 0.2 GeV at r = 0. The parameter σ
is in principle arbitrary, but we choose it to be σ = 0.02 fm
in order to have a very steep fall of the energy density near
r � R. Choosing the ideal equation of state ε(p) = 3p for
which the speed of sound squared c2s =

1
3 , we can then com-

pare the time evolution of temperature and velocity to the
analytic solution

TBaym(r, τ) = T0e
−csαR(r,τ−τ0)

×
(τ0
τ

)c2s [1+(1−csvR(r,τ−τ0))−1]/2
,

1 A version of the code, written in reasonably well docu-
mented C, may be obtained upon request from paulrom@
physik.uni-bielefeld.de.
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vBaym(r, τ) = tanh

[
αR(r, τ − τ0)

+
c2s
2

(
vR(r, τ − τ0)

1− csvR(r, τ − τ0)

)
ln

(
τ − τ0
τ0

)]

αR(r, t) =

⎧
⎪⎨

⎪⎩

0 , r < R− cst ,

− 12 ln
(
t−r+R
t+r−R

1−cs
1+cs

)
,R− cst < r < R+ t ,

∞ , r > R+ t ,

vR(r, t) =

⎧
⎨

⎩

0 , r < R− cst ,
r−R+cst
t+cs(r−R)

,R− cst < r < R+ t ,
1 , r > R+ t .

(12)

from Baym et al. [52]. Results are shown in Fig. 1, where
it can be seen that – within the errors of the approximate
analytic solution – the numerical solution agrees with the
results (12).

3 Fluctuations
and linearized viscous hydrodynamics

Motivated by cosmology where one can actually ob-
serve correlations of density fluctuations in the early uni-
verse [49–51], we study radial fluctuations of the energy
density ε, the flow velocity v and the shear tensor Πµν

around a background solution ε0, u
r
0,Π

µν
0 such that

ε(τ, r) = ε0(τ)+ δε(τ, r) ,

v(τ, r) = δv(τ, r) , Πµν =Πµν0 (τ)+ δΠ
µν(τ, r) ,

(13)

where the background solution obeys the equations [39–41,
53]

∂τ ε0 =−
ε0+p0
τ
+
1

τ
Πηη, 0 ,

∂τΠ
η
η, 0 =−

1

τΠ
Πηη, 0+

8p0
9τ
, (14)

and we recall that η
τΠ
= 2p03 .

In what follows, we will assume that the fluctuations
around the background are small so we keep only terms
linear in the perturbations (“linearized hydrodynamics”,
c.f. [54–56]). Note, however, that we keep the full non-
trivial time dependence of the background, which to the
best of our knowledge has not been done before in the
context of heavy-ion collisions even in the case of ideal
hydrodynamics.
To slightly simplify the discussion, we want to assume

in this section that τΠ is constant with respect to time
(which consequently requires a time-dependent ratio of
η/s), whereas in other sections of this work τΠ will be time-
dependent. To linear order in the perturbations one is thus
left with the set of coupled partial differential equations
[
(ε0+p0−Π

r
r,0)∂τ + c

2
s∂τ ε0−

(
∂τ +

1

τ

)
Πrr,0+

1

τ
Πηη,0

]
δv

+ c2s∂rδε−

[
∂r+

2

r

]
δΠrr −

1

r
δΠηη = 0 ,

[
(ε0+p0)

(
∂r+

1

r

)
−Πrr,0

(
∂r−

1

r

)
+
1

r
Πηη,0

]
δv

+

[
∂τ +

1+ c2s
τ

]
δε−

1

τ
δΠηη = 0 ,

4

9
p0

[
∂r+

1

r

]
δv−

8

9

c2s
τ
δε+

[
∂τ +

1

τΠ

]
δΠηη = 0 ,

4

9
p0

[
−2∂r+

1

r

]
δv+

4

9

c2s
τ
δε+

[
∂τ +

1

τΠ

]
δΠrr = 0 . (15)

These can be further simplified by noting that for the ini-
tial condition Πµν0 = 0 and no radial flow one has Π

r
r,0 =

Πφφ,0 and as a consequence of Π
µ
µ,0 = 0 the relation Π

r
r,0 =

− 12Π
η
η,0 holds for all τ .
Usually one would do a space-like Fourier transform-

ation to get rid of the space-like derivatives. Due to our
choice of coordinates, however, this is obviously not pos-
sible. However, upon introducing

δΠ̄ =

(
∂r+

2

r

)
δΠrr +

1

r
δΠηη , (16)

we can achieve the same goal by doing a so-called Bessel–
Fourier transformation,

δv(τ, r) =

∫ ∞

0

dκJ1(κr)δṽ(τ, κ) ,

δε(τ, r) =

∫ ∞

0

dκJ0(κr)δε̃(τ, κ) ,

δΠ̄(τ, r) =

∫ ∞

0

dκJ1(κr)δΠ̃(τ, κ) ,

δΠηη (τ, r) =

∫ ∞

0

dκJ0(κr)δΠ̃
η
η (τ, κ) , (17)

where the property of the Bessel functions Jn
∫ ∞

0

drrJn(κr)Jn(κ
′r) =

δ(κ−κ′)

κ
(18)

can be used to invert the above transformations. Using an
ideal equation of state, p0 = c

2
s ε0, and (14) to remove ex-

plicit time derivatives on ε0 andΠ
η
η,0, we thus find

[
(ε0+p0+

1

2
Πηη,0)∂τ + c

2
s∂τ ε0+

1

2

(
∂τ +

3

τ

)
Πηη,0

]

× δṽ−κc2sδε̃− δΠ̃ = 0 ,[
ε0+p0+

1

2
Πηη,0

]
κδṽ+

[
∂τ +

1+ c2s
τ

]
δε̃−

1

τ
δΠ̃ηη = 0 ,

4

9
p0κδṽ−

8

9

c2s
τ
δε̃+

[
∂τ +

1

τΠ

]
δΠ̃ηη = 0 ,

8

9
p0κ

2δṽ−
4

9
κ
c2s
τ
δε̃+

[
∂τ +

1

τΠ

]
δΠ̃ = 0 . (19)

3.1 Sonic peaks in ideal hydrodynamics

Upon first taking the limit τΠ → 0 and then setting Π
µν
0

as well as δΠµν to zero we recover the equations for
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Fig. 2. Left figure: the correlation function f(κ, τ, τ0) from solving hydrodynamic equations on a lattice (symbols, see text for
details) for τ0 = 1 fm/c and different τ compared to the analytic result (full lines). As one can see, the agreement between the
analytic result and the measured correlation function is very good in general (a slight difference e.g. in the speed of sound would
be clearly visible by a shift in the minima/maxima of f). Note that at later times, a discrepancy at low momenta κ develops. This
is probably a lattice artifact, since increasing the simulated volume reduces the discrepancy (right figure)

fluctuations in ideal hydrodynamics, which together with
ε0 ∝ τ−1−c

2
s require

[
∂2τ −

c2s
τ
∂τ +

c2s
τ2
+ c2sκ

2

]
δṽ(τ, κ) = 0 (20)

(and a similar differential equation for δε̃). As can be
quickly verified, the solutions to the linearized ideal hydro-
dynamic equations then become

δv(τ, r) =

∫ ∞

0

dκJ1(κr)τ
(1+c2s )/2

×
[
A(κ)J(−1+c2s )/2(κcsτ)

+B(κ)Y(−1+c2s )/2(κcsτ)
]
,

δε(τ, r)

ε0(τ)
=−
1+ c2s
cs

∫ ∞

0

dκJ0(κr)τ
(1+c2s )/2

×
[
A(κ)J(1+c2s )/2(κcsτ)

+B(κ)Y(1+c2s )/2(κcsτ)
]
,

(21)

where J and Y are both Bessel functions of the first kind
and A,B are constants of integration.
As initial conditions at the starting time τ = τ0 we

choose for simplicity δv(τ0, r) = 0 and random noise for
δε(τ0, r) with a correlation function

2

ε−20 〈δε(τ0, r)δε(τ0, r
′)〉=∆2

δ(r− r′)

r
, (22)

which is the polar-coordinate equivalent of a Gaussian dis-
tribution with standard deviation∆.

2 Let f(i)(r) be the ith configuration of an observable f . The
correlation function 〈f(r)f(r′)〉 is then defined as 〈f(r)f(r′)〉 ≡

limN→∞
1
N

∑N
i=1 f

(i)(r)f(i)(r′).

This initial condition has the advantage that it implies

〈A(κ)A(κ′)〉= κδ(κ−κ′)
∆2c2s

τ
1+c2s
0 (1+ c2s)

2

×

[
J(1+c2s )/2(κcsτ0)

−Y(1+c2s )/2(κcsτ0)
J(−1+c2s )/2(κcsτ0)

Y(−1+c2s )/2(κcsτ0)

]−2
,

(23)

such that

ε−20 (τ) 〈δε(τ, r)δε(τ, r
′)〉 =

∫ ∞

0

dκκJ0(κr)J0(κr
′)

×f(κ, τ, τ0) , (24)

where

f(κ, τ, τ0) =

(
τ

τ0

)1+c2s
∆2

×

[
J(1+c2s )/2(κcsτ)Y(−1+c2s )/2(κcsτ0)

−Y(1+c2s )/2(κcsτ)J(−1+c2s )/2(κcsτ0)
]2

[
J(1+c2s )/2(κcsτ0)Y(−1+c2s )/2(κcsτ0)

−Y(1+c2s )/2(κcsτ0)J(−1+c2s )/2(κcsτ0)
]2
.

(25)

Despite its ugly appearance, this is a nice result since
for large κ we find

f(κ, τ, τ0)→

(
τ

τ0

)c2s
∆2 cos2 (κcs(τ − τ0)) , (26)

which are just the sonic peaks that one can also derive in
cosmology.
This result can serve as a stringent test on the numeri-

cal algorithm used to solve the hydrodynamic equations, as
the position of the maxima andminima of f as a function of
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Fig. 3. Comparison for f(κ, τ, τ0) from solving hydrodynamic equations on a lattice (symbols, η/s = 0.1 (left) and η/s = 0.3
(right), respectively) with 4096 sites and lattice spacing a= 0.25 GeV−1 and “analytic” solution (full lines) of (19)

κ are very sensitive to the speed of sound. In what follows,
we thus initialize our numerical algorithm with precisely
the same initial conditions as discussed above and then
measure the correlation function ε−20 (τ)〈δε(τ, r)δε(τ, r

′)〉
to extract f(κ, τ, τ0) by using (18) to integrate out

3 both

r, r′,
∫ ∞

0

rdr

∫ ∞

0

r′dr′J0(κr)J0(κ
′r′)ε−20 (τ) 〈δε(τ, r)δε(τ, r

′)〉

=
δ(κ−κ′)

κ
f(κ, τ, τ0) . (27)

To maximize the signal, we pick κ= κ′, which is regular on
the lattice we use to solve the hydrodynamic equations.
In Fig. 2 we show the result for4 f(κ, τ, τ0) obtained on

a lattice with lattice spacing a= 0.25GeV−1 andN = 8192
sites and η/s= 10−4, ensemble-averaged over 100 config-
urations and coarse-grained in κ, for three different times
τ . Up to three sonic peaks can be nicely distinguished and
the comparison with the analytic result (25) indicates that
our code indeed accurately solves the ideal hydrodynamic
equations with the “correct” speed of sound. There is, how-
ever, a slight discrepancy between the numerical measured
correlation function and its analytic result at small κ and
later times: presumably, this is due to the fact that, on
the lattice, only a finite number of momenta can be simu-
lated, and thus the inversion formula (27) holds only ap-
proximately. Indeed, the second part of Fig. 2 shows that
this discrepancy can be systematically reduced by going to
larger lattice volumes. Since the solution of the viscous hy-
drodynamic equations themselves do not depend on rela-
tions such as (27), this discrepancy should not be mistaken
as a failure of the algorithm to correctly treat low momen-
tum modes.

3 Since we solve the hydrodynamic equations on a lattice,
in practice we do the integrations by summing over all lat-

tice sites. Furthermore, the momenta κ= πk
Na are also discrete,

where a is the spatial lattice spacing, N is the number of lattice
sites, and k is a positive integer smaller than N/2.
4 Note that the lattice dispersion relation κ= a−1 sin (πk/N)
has been used to convert to continuum values.

3.2 Sonic peaks in viscous hydrodynamics

Treating the set of equations (19) in their full generality we
were unable to find analytic solutions like those obtained in
the previous subsection. However, since together with (14)
these are just a set of six coupled ordinary differential equa-
tions they readily lend themselves to numerical solutions,
which we nevertheless want to refer to as “analytic” since
they are completely independent of our numerical algo-
rithm to solve the hydrodynamic equations.
With the same initial conditions as in the previous

subsection one therefore obtains an “analytic” solution of
the correlation function f(κ, τ, τ0), with both expansion
and viscosity included. In Fig. 3, this “analytic” solution
is again compared to the correlation function obtained by
solving the hydrodynamic equations on a lattice (for η/s=
0.1 and η/s = 0.3, respectively). Similarly to the case of
vanishing viscosity, we find that there is very good general
agreement between the measured (ensemble-averaged and
coarse-grained) correlation function and the “analytic” re-
sult, except for later times and small momenta κ, where
lattice artifacts seem to be accumulating.
Since also in this case the position and width of the

sonic peaks are very sensitive to the value of η/s and the
speed of sound, we argue that the good agreement between
measured and “analytic” correlation functions is a strong
indication that our numerical code is indeed correctly solv-
ing the second order viscous hydrodynamic equations.
Finally, we want to point out that fluctuation measure-

ments may also help to constrain the value of η/s from
RHIC data, as has been recently suggested [57].

4 Causal viscous hydrodynamics
with transverse flow

Let us now study the effects of viscosity on the quantities of
interest for heavy-ion collisions. For simplicity, we will as-
sume that the radial energy density profile is given by (11),
where we takeR0 = 6.4 fm and σ = 0.54 fm, which has been
used before for ideal hydrodynamic calculations [52]. The
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constant e0 is chosen such that we have an initial tem-
perature T0 at r = 0. In accordance with ideal hydrody-
namic studies in their simplest form we assume that at
the time when we start applying our hydrodynamic de-
scription (τ = τ0), the system does not have any transverse
flow already, so v = 0. Furthermore, since this is still an
exploratory study, we pick a simplistic equation of state,
p= c2s ε, with constant speed of sound c

2
s = 1/3.

This set of initial conditions would be sufficient to de-
termine the subsequent dynamics fully in the case of ideal
hydrodynamics. Including the effects of viscosity requires
that we pick a specific value of the ratio η/s and also pro-
vide initial conditions for the two independent components
of Πµν at τ = τ0. Maybe the simplest choice would be to
assume – like in ideal hydrodynamics – that the system
for some reason happens to be in equilibrium at τ = τ0,
such that “accidentally” Πµν = 0. This choice probably
highlights best the difference of viscous hydrodynamics to
ideal hydrodynamics, since one starts from the same initial
condition, so we will use it as our initial condition in the
following.
However, there are other “sensible” choices of initial

conditions that might be more relevant for real heavy-ion
collisions in the future. For example, within the color-glass-
condensate model in its simplest form (the McLerran–
Venugopalan model [58, 59]), the system does not have any
longitudinal dynamics, so after times τ >Q−1s , whereQs is
the saturation scale, the system essentially has zero longi-
tudinal pressure [60, 61]. In the local rest frame ur = uφ =
uη = 0, so with c2s = 1/3, (4) would imply

Πηη = p, Π
r
r =−

p

2
. (28)

Finally, going beyond the McLerran–Venugopalan
model to include so-called next-to-leading order correc-
tions of gluon production [62, 63] one has to take into
account the effect of rapidity fluctuations and full three-
dimensional gauge field dynamics. This has recently been
shown to trigger instabilities [31], leading to the gener-
ation of a non-zero longitudinal pressure [64] at τ > Q−1s .
Pending the result using the correct rapidity fluctua-
tion spectrum [65], the initial condition for Πµν is ex-
pected to lie somewhere in-between the two cases discussed
above.

4.1 Temperature profile in viscous hydrodynamics

Choosing the initial conditionΠµν = 0 at τ = τ0, we can in-
vestigate the changes of the temperature profile from the
ideal hydrodynamic behavior due to dynamical viscous ef-
fects. In Fig. 4 we show the temperature as a function of
the radius for T0 = 0.36GeV at τ0 = 1 fm/c but for dif-
ferent values of η/s calculated on a lattice with 512 sites
and a= 0.25GeV−1 lattice spacing. Choosing the tempo-
ral time step as δτ = 0.005 a we find that the violation√
|(uτ )2− (ur)2−1|, summed over all lattice sites and di-
vided by the number of sites always stays smaller than one
percent, providing yet another check on the numerics. Fi-
nally, we have checked that choosing a = 1 or 0.5 GeV−1

Fig. 4. Temperature profile for calculations with different η/s
(dashed, dotted and solid lines, respectively) for three differ-
ent times (see text for details). As expected, for larger values
of η/s, differences to ideal hydrodynamics are biggest and vis-
cous hydrodynamics initially cools slower than ideal hydro-
dynamics. However, note that in certain regions and at later
times, viscous hydrodynamics turns out to give temperatures
slightly smaller than the corresponding ideal hydrodynamic
calculation

does not result in any noticeable deviations of our calcu-
lated temperature profile; thus, we have some confidence
that our results are not strongly affected by numerical
artifacts.
For early times, the behavior shown in Fig. 4 shows that

– as in the case of neglecting transverse flow [39–41,45] – in
viscous hydrodynamics the temperature decreases slower
than in ideal hydrodynamics. However, at late times this
behavior is seemingly counter-acted by viscous radial dy-
namics: at very small values of the radius, the viscous hy-
drodynamic equations result in slightly lower temperatures
than in the ideal hydrodynamic case. Note that such be-
havior has been also found in [66, 67].

4.2 Particle spectra in viscous hydrodynamics

The success of the hydrodynamic picture in the context
of heavy-ion collisions builds upon the ability to fit the
particle spectra observed in these collisions. While now
methods of how to convert hydrodynamic quantities such
as energy density and fluid velocity into particle spectra
have reached some sophistication, the main building block
still seems to involve the Cooper–Frye freeze-out prescrip-
tion [68] in some form or other, which states that the spec-
trum of particles with energy E and momentum p is given
by

E
d3N

d3p
=

d

(2π)3

∫
pµdΣ

µf

(
pµu

µ

T

)
, (29)

where d is the degeneracy of the particles and uµ is the
velocity that comes out of the solution of the hydro-
dynamic equations. Here f is the distribution function
which – including viscous corrections – can be written
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as [33, 45]

f = f0

(
1+
pµpνΠ

µν

2T 2(ε+p)

)
, (30)

where for simplicity we take the equilibrium distribution
f0 to be given by the Boltzmann distribution

5 f0(x) =
exp(−x).
Furthermore, dΣµ is the normal vector on the freeze-

out surface, parametrized as dΣµ = (cosh η, cosφ
dτf (r)

dr ,

sinφ
dτf (r)

dr , sinh η)rdrτf (r)dφdη in our choice of coordi-

nates [42]. Here τf (r) is the freeze-out time parametrized
as a function of r or – put differently – the time at which
the slab of matter at radius r has reached the freeze-out
condition.
For this exploratory study, we will apply the Cooper–

Frye freeze-out prescription to convert the hydrodynamic
variables at a single specific temperature (the freeze-out
temperature Tf) into transverse momentum spectra for
particles. This is what also has been used in early ideal
hydrodynamic calculations [69, 70]. Since we use a gluonic
equation of state and do not include a realistic matching
to hadronic degrees of freedom, we contend ourselves to a
study of the effects of viscosity on the spectrum of gluons
mostly.
For the spectrum, in terms of particle transverse mo-

mentum p⊥, angle φp and rapidity y, one thus finds

pµdΣ
µ =

(
m⊥ cosh(η−y)−p⊥ cos(φ−φp)

dτf (r)

dr

)

× τf (r)rdrdφdη , (31)

withm⊥ =
√
p2⊥+m

2
0 andm0 the rest mass of the particle.

Since in our calculations we are only including trans-
verse flow we have

pµu
µ = (m⊥ cosh(η−y)u

τ −p⊥ cos(φ−φp)u
r) , (32)

which allows us to integrate out both angles φ and rapidi-
ties η in (29). Using
∫ ∞

−∞
dη coshn η exp(−x cosh η) =

(
−
d

dx

)n
2K0(x) ,

∫ π

0

dφ

π
cosnφ exp (x cosφ) = In(x) , (33)

where Kn(x) and In(x) are the modified Bessel functions,
one finds for the particle spectrum

E
d3N

d3p
=E
d3N0

d3p
+E
d3δN

d3p
, (34)

with the equilibrium part taking the form

E
d3N0

d3p
=
2d

(2π)2

∫
rdrτf (r)

[
m⊥I0(u

rp⊥/T )K1(u
τm⊥/T )

−
dτf (r)

dr
p⊥I1(u

rp⊥/T )K0(u
τm⊥/T )

]
, (35)

5 It is easy to change this to Bose–Einstein or Fermi–Dirac
distributions, but for massive particles we have found the differ-
ences in the resulting observables to be minimal.

where the integral over r runs from 0 to the maximum
freeze-out radius if τf (r) is a single-valued function (oth-
erwise one has to introduce a different parametrization of
the freeze-out surface). Noting that the BesselK functions
always have the argument uτm⊥/T (and similarly for the
I) we refrain from writing the argument in the following.
Noting that

pµpνΠ
µν =Πrr [2vm⊥p⊥ cosh(y−η) cos(φp−φ)

−p2⊥ cos(2(φp−φ))

− v2m2⊥ cosh
2(y−η)− v2p2⊥ sin

2(φp−φ)
]

+Πηη
[
−m2⊥ sinh

2(y−η)+p2⊥ sin
2(φp−φ)

]
,

(36)

we then find for the dissipative corrections to the spectrum

E
d3δN

d3p
=

d

(2π)2

∫
rdr

τf (r)

2T 2(ε+p)

×

{
2p⊥m⊥vΠ

r
r

×

[
m⊥(K0+K2)I1−p⊥

dτf
dr
K1(I2+ I0)

]

−p2⊥Π
r
r

[
2m⊥K1I2−p⊥

dτf
dr
K0(I3+ I1)

]

− v2m2⊥Π
r
r

×

[
1

2
m⊥(3K1+K3)I0−p⊥

dτf
dr
(K0+K2)I1

]

− v2p2⊥Π
r
r

×

[
m⊥K1(I0− I2)−p⊥

dτf
dr
K0
1

2
(I1− I3)

]

+p2⊥Π
η
η

[
m⊥K1(I0− I2)−p⊥

dτf
dr
K0
1

2
(I1− I3)

]

−m2⊥Π
η
η

×

[
m⊥
1

2
(K3−K1)I0−p⊥

dτf
dr
(K2−K0)I1

]}
,

(37)

where we recall that v = ur/uτ .
In Fig. 5, we show the inverse slope parameter Tslope of

gluons, which we define by calculating the gluonic spec-
trum at Tf = 0.135GeV and fitting it by

E
d3N

d3p
∼

1

T 2slope
exp [−p⊥/Tslope]

for 0.2 < p⊥ < 1 GeV (c.f.[71]). In Fig. 5a, the slope has
been calculated for T0 = 0.36GeV, τ = 1 fm/c and for the
two extreme cases Πµν(τ0) = 0 (full line) and zero initial
longitudinal pressure (28) (dashed line). As can be seen
from this figure, increasing η/s and leaving all other pa-
rameters unchanged leads to an increasing Tslope (“flatter
spectra”) for gluons, with no dramatic difference between
the two different initial choices for Πµν . However, as has
been anticipated from our earlier studies neglecting the ef-
fect of transverse flow [45], one can compensate this effect
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Fig. 5. Inverse slope parameter Tslope for Tf = 0.135 GeV and τ0 = 1 fm/c. Two initial conditions for Π
µν , corresponding to pres-

sure isotropy (full line) and vanishing longitudinal pressure (dashed line) at τ = τ0 are shown. Choosing T0 = 0.36 GeV (left),
the spectra become increasingly flatter when raising η/s, while this effect can be compensated by lowering T0 (right , shown for
η/s = 0.16)

by changing the effective initial conditions. This can be
seen in Fig. 5b, where we show the spectral slope for the
same freeze-out temperature but different initial tempera-
tures T0.
It is also interesting to study how the presence of vis-

cosity affects massive particles. To this end, hypothetical
spectra of pions, kaons and protons for Tf = 0.135GeV,
T0 = 0.36GeV and Π

µν(τ0) = 0 at τ0 = 1 fm/c are shown
in Fig. 6. These spectra cannot be directly interpreted
as real particle spectra because a realistic matching to
a hadronic equation of state and the effects from higher-
mass resonance decays [72] are missing in this study6.
Nevertheless, from Fig. 6 one can glean that the more mas-
sive a particle is, the more viscosity affects its spectrum, in
particular at low p⊥. Indeed, this can be traced back to (35)
and (37), which in the limit of vanishing p⊥ and neglecting
radial dynamics (v = 0) predict negative d3N/d3p for large
m0/T , more specifically for

m0

T
>
2(ε+p)− 158 Π

η
η

Πηη
. (38)

Thus it seems that – whenever Πηη /(ε+p) becomes non-
negligible – viscous corrections δN to the spectrum of high-
mass particles become very large, e.g. more than 100 per-
cent at low p⊥. While it is unclear at which value of η/s this
starts to be a problem in practice, it nevertheless serves
as an indication that the assumption of small deviations
from equilibrium [45] is breaking down. Consequently, the
reliability of the tool we have used to probe the system
dynamics, namely viscous hydrodynamics, becomes ques-
tionable. Thus, for η/s larger than a critical value, one
probably has to use a model different from hydrodynamics
to correctly calculate observables that are to be compared
to experiments.

6 See, however, [73] for a comparison to the experimental
data.

Fig. 6. Mass dependence of viscous effects: shown are spec-
tra for pions, kaons and protons for a freeze-out tempera-
ture of Tf = 0.135 GeV and for T0 = 0.36 GeV and Π

µν = 0
at τ0 = 1 fm/c. As can be seen, the higher the mass of the
particle, the stronger do viscous effects change its low p⊥
behavior

5 Conclusions

We have studied the effect of shear viscosity in a hydrody-
namic description of central heavy-ion collisions. We pre-
sented a simple algorithm to solve the relevant equations
numerically and have successfully carried out several tests
on this algorithm. These tests are not specific to our al-
gorithm, but can in general be used to test any algorithm
for solving relativistic viscous hydrodynamics. Assuming
an ideal equation of state ε = 3p for simplicity we calcu-
lated the time evolution of the temperature profile of a cen-
tral heavy-ion collision, finding that, while viscous hydro-
dynamics in general cools slower, certain regions at later
times may cool faster than in a corresponding ideal hydro-
dynamic calculation.
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We also calculated the effect of viscosity on the slope
of gluon spectra, finding that for small values of η/s,
changes can largely be compensated by lowering the tem-
perature at which the hydrodynamic evolution is started.
For massive particles we find that viscosity changes the
spectrum the more, the higher the mass of the particle
under consideration. We give arguments that for a suffi-
ciently large value of η/s, corrections that in the derivation
of the viscous hydrodynamic equations had been assumed
to be small actually become large, thus signaling the pos-
sible breakdown of any hydrodynamic description of the
system.
Even though our simplifying assumptions (ideal equa-

tion of state, no feed-down correction, only radial flow)
leave ample room for improvement, we hope that our study
provides the basis for coming viscous hydrodynamic algo-
rithms as well as fits to experimental data.
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